Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cochrane Database Syst Rev ; 5: CD013639, 2022 05 16.
Article in English | MEDLINE | ID: covidwho-1843836

ABSTRACT

BACKGROUND: Our March 2021 edition of this review showed thoracic imaging computed tomography (CT) to be sensitive and moderately specific in diagnosing COVID-19 pneumonia. This new edition is an update of the review. OBJECTIVES: Our objectives were to evaluate the diagnostic accuracy of thoracic imaging in people with suspected COVID-19; assess the rate of positive imaging in people who had an initial reverse transcriptase polymerase chain reaction (RT-PCR) negative result and a positive RT-PCR result on follow-up; and evaluate the accuracy of thoracic imaging for screening COVID-19 in asymptomatic individuals. The secondary objective was to assess threshold effects of index test positivity on accuracy. SEARCH METHODS: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, The Stephen B. Thacker CDC Library, and repositories of COVID-19 publications through to 17 February 2021. We did not apply any language restrictions. SELECTION CRITERIA: We included diagnostic accuracy studies of all designs, except for case-control, that recruited participants of any age group suspected to have COVID-19. Studies had to assess chest CT, chest X-ray, or ultrasound of the lungs for the diagnosis of COVID-19, use a reference standard that included RT-PCR, and report estimates of test accuracy or provide data from which we could compute estimates. We excluded studies that used imaging as part of the reference standard and studies that excluded participants with normal index test results. DATA COLLECTION AND ANALYSIS: The review authors independently and in duplicate screened articles, extracted data and assessed risk of bias and applicability concerns using QUADAS-2. We presented sensitivity and specificity per study on paired forest plots, and summarized pooled estimates in tables. We used a bivariate meta-analysis model where appropriate. MAIN RESULTS: We included 98 studies in this review. Of these, 94 were included for evaluating the diagnostic accuracy of thoracic imaging in the evaluation of people with suspected COVID-19. Eight studies were included for assessing the rate of positive imaging in individuals with initial RT-PCR negative results and positive RT-PCR results on follow-up, and 10 studies were included for evaluating the accuracy of thoracic imaging for imagining asymptomatic individuals. For all 98 included studies, risk of bias was high or unclear in 52 (53%) studies with respect to participant selection, in 64 (65%) studies with respect to reference standard, in 46 (47%) studies with respect to index test, and in 48 (49%) studies with respect to flow and timing. Concerns about the applicability of the evidence to: participants were high or unclear in eight (8%) studies; index test were high or unclear in seven (7%) studies; and reference standard were high or unclear in seven (7%) studies. Imaging in people with suspected COVID-19 We included 94 studies. Eighty-seven studies evaluated one imaging modality, and seven studies evaluated two imaging modalities. All studies used RT-PCR alone or in combination with other criteria (for example, clinical signs and symptoms, positive contacts) as the reference standard for the diagnosis of COVID-19. For chest CT (69 studies, 28285 participants, 14,342 (51%) cases), sensitivities ranged from 45% to 100%, and specificities from 10% to 99%. The pooled sensitivity of chest CT was 86.9% (95% confidence interval (CI) 83.6 to 89.6), and pooled specificity was 78.3% (95% CI 73.7 to 82.3). Definition for index test positivity was a source of heterogeneity for sensitivity, but not specificity. Reference standard was not a source of heterogeneity. For chest X-ray (17 studies, 8529 participants, 5303 (62%) cases), the sensitivity ranged from 44% to 94% and specificity from 24 to 93%. The pooled sensitivity of chest X-ray was 73.1% (95% CI 64. to -80.5), and pooled specificity was 73.3% (95% CI 61.9 to 82.2). Definition for index test positivity was not found to be a source of heterogeneity. Definition for index test positivity and reference standard were not found to be sources of heterogeneity. For ultrasound of the lungs (15 studies, 2410 participants, 1158 (48%) cases), the sensitivity ranged from 73% to 94% and the specificity ranged from 21% to 98%. The pooled sensitivity of ultrasound was 88.9% (95% CI 84.9 to 92.0), and the pooled specificity was 72.2% (95% CI 58.8 to 82.5). Definition for index test positivity and reference standard were not found to be sources of heterogeneity. Indirect comparisons of modalities evaluated across all 94 studies indicated that chest CT and ultrasound gave higher sensitivity estimates than X-ray (P = 0.0003 and P = 0.001, respectively). Chest CT and ultrasound gave similar sensitivities (P=0.42). All modalities had similar specificities (CT versus X-ray P = 0.36; CT versus ultrasound P = 0.32; X-ray versus ultrasound P = 0.89). Imaging in PCR-negative people who subsequently became positive For rate of positive imaging in individuals with initial RT-PCR negative results, we included 8 studies (7 CT, 1 ultrasound) with a total of 198 participants suspected of having COVID-19, all of whom had a final diagnosis of COVID-19. Most studies (7/8) evaluated CT. Of 177 participants with initially negative RT-PCR who had positive RT-PCR results on follow-up testing, 75.8% (95% CI 45.3 to 92.2) had positive CT findings. Imaging in asymptomatic PCR-positive people For imaging asymptomatic individuals, we included 10 studies (7 CT, 1 X-ray, 2 ultrasound) with a total of 3548 asymptomatic participants, of whom 364 (10%) had a final diagnosis of COVID-19. For chest CT (7 studies, 3134 participants, 315 (10%) cases), the pooled sensitivity was 55.7% (95% CI 35.4 to 74.3) and the pooled specificity was 91.1% (95% CI 82.6 to 95.7). AUTHORS' CONCLUSIONS: Chest CT and ultrasound of the lungs are sensitive and moderately specific in diagnosing COVID-19. Chest X-ray is moderately sensitive and moderately specific in diagnosing COVID-19. Thus, chest CT and ultrasound may have more utility for ruling out COVID-19 than for differentiating SARS-CoV-2 infection from other causes of respiratory illness. The uncertainty resulting from high or unclear risk of bias and the heterogeneity of included studies limit our ability to confidently draw conclusions based on our results.


Subject(s)
COVID-19 , COVID-19/diagnostic imaging , Humans , SARS-CoV-2 , Sensitivity and Specificity , Tomography, X-Ray Computed , Ultrasonography
2.
World journal of radiology ; 14(2):47-49, 2022.
Article in English | EuropePMC | ID: covidwho-1749368

ABSTRACT

The ongoing coronavirus disease 2019 (COVID-19) pandemic continues to present diagnostic challenges. The use of thoracic radiography has been studied as a method to improve the diagnostic accuracy of COVID-19. The ‘Living’ Cochrane Systematic Review on the diagnostic accuracy of imaging tests for COVID-19 is continuously updated as new information becomes available for study. In the most recent version, published in March 2021, a meta-analysis was done to determine the pooled sensitivity and specificity of chest X-ray (CXR) and lung ultrasound (LUS) for the diagnosis of COVID-19. CXR gave a sensitivity of 80.6% (95%CI: 69.1-88.6) and a specificity of 71.5% (95%CI: 59.8-80.8). LUS gave a sensitivity rate of 86.4% (95%CI: 72.7-93.9) and specificity of 54.6% (95%CI: 35.3-72.6). These results differed from the findings reported in the recent article in this journal where they cited the previous versions of the study in which a meta-analysis for CXR and LUS could not be performed. Additionally, the article states that COVID-19 could not be distinguished, using chest computed tomography (CT), from other respiratory diseases. However, the latest review version identifies chest CT as having a specificity of 80.0% (95%CI: 74.9-84.3), which is much higher than the previous version which indicated a specificity of 61.1% (95%CI: 42.3-77.1). Therefore, CXR, chest CT and LUS have the potential to be used in conjunction with other methods in the diagnosis of COVID-19.

6.
Cochrane Database Syst Rev ; 3: CD013639, 2021 03 16.
Article in English | MEDLINE | ID: covidwho-1159778

ABSTRACT

BACKGROUND: The respiratory illness caused by SARS-CoV-2 infection continues to present diagnostic challenges. Our 2020 edition of this review showed thoracic (chest) imaging to be sensitive and moderately specific in the diagnosis of coronavirus disease 2019 (COVID-19). In this update, we include new relevant studies, and have removed studies with case-control designs, and those not intended to be diagnostic test accuracy studies. OBJECTIVES: To evaluate the diagnostic accuracy of thoracic imaging (computed tomography (CT), X-ray and ultrasound) in people with suspected COVID-19. SEARCH METHODS: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, The Stephen B. Thacker CDC Library, and repositories of COVID-19 publications through to 30 September 2020. We did not apply any language restrictions. SELECTION CRITERIA: We included studies of all designs, except for case-control, that recruited participants of any age group suspected to have COVID-19 and that reported estimates of test accuracy or provided data from which we could compute estimates. DATA COLLECTION AND ANALYSIS: The review authors independently and in duplicate screened articles, extracted data and assessed risk of bias and applicability concerns using the QUADAS-2 domain-list. We presented the results of estimated sensitivity and specificity using paired forest plots, and we summarised pooled estimates in tables. We used a bivariate meta-analysis model where appropriate. We presented the uncertainty of accuracy estimates using 95% confidence intervals (CIs). MAIN RESULTS: We included 51 studies with 19,775 participants suspected of having COVID-19, of whom 10,155 (51%) had a final diagnosis of COVID-19. Forty-seven studies evaluated one imaging modality each, and four studies evaluated two imaging modalities each. All studies used RT-PCR as the reference standard for the diagnosis of COVID-19, with 47 studies using only RT-PCR and four studies using a combination of RT-PCR and other criteria (such as clinical signs, imaging tests, positive contacts, and follow-up phone calls) as the reference standard. Studies were conducted in Europe (33), Asia (13), North America (3) and South America (2); including only adults (26), all ages (21), children only (1), adults over 70 years (1), and unclear (2); in inpatients (2), outpatients (32), and setting unclear (17). Risk of bias was high or unclear in thirty-two (63%) studies with respect to participant selection, 40 (78%) studies with respect to reference standard, 30 (59%) studies with respect to index test, and 24 (47%) studies with respect to participant flow. For chest CT (41 studies, 16,133 participants, 8110 (50%) cases), the sensitivity ranged from 56.3% to 100%, and specificity ranged from 25.4% to 97.4%. The pooled sensitivity of chest CT was 87.9% (95% CI 84.6 to 90.6) and the pooled specificity was 80.0% (95% CI 74.9 to 84.3). There was no statistical evidence indicating that reference standard conduct and definition for index test positivity were sources of heterogeneity for CT studies. Nine chest CT studies (2807 participants, 1139 (41%) cases) used the COVID-19 Reporting and Data System (CO-RADS) scoring system, which has five thresholds to define index test positivity. At a CO-RADS threshold of 5 (7 studies), the sensitivity ranged from 41.5% to 77.9% and the pooled sensitivity was 67.0% (95% CI 56.4 to 76.2); the specificity ranged from 83.5% to 96.2%; and the pooled specificity was 91.3% (95% CI 87.6 to 94.0). At a CO-RADS threshold of 4 (7 studies), the sensitivity ranged from 56.3% to 92.9% and the pooled sensitivity was 83.5% (95% CI 74.4 to 89.7); the specificity ranged from 77.2% to 90.4% and the pooled specificity was 83.6% (95% CI 80.5 to 86.4). For chest X-ray (9 studies, 3694 participants, 2111 (57%) cases) the sensitivity ranged from 51.9% to 94.4% and specificity ranged from 40.4% to 88.9%. The pooled sensitivity of chest X-ray was 80.6% (95% CI 69.1 to 88.6) and the pooled specificity was 71.5% (95% CI 59.8 to 80.8). For ultrasound of the lungs (5 studies, 446 participants, 211 (47%) cases) the sensitivity ranged from 68.2% to 96.8% and specificity ranged from 21.3% to 78.9%. The pooled sensitivity of ultrasound was 86.4% (95% CI 72.7 to 93.9) and the pooled specificity was 54.6% (95% CI 35.3 to 72.6). Based on an indirect comparison using all included studies, chest CT had a higher specificity than ultrasound. For indirect comparisons of chest CT and chest X-ray, or chest X-ray and ultrasound, the data did not show differences in specificity or sensitivity. AUTHORS' CONCLUSIONS: Our findings indicate that chest CT is sensitive and moderately specific for the diagnosis of COVID-19. Chest X-ray is moderately sensitive and moderately specific for the diagnosis of COVID-19. Ultrasound is sensitive but not specific for the diagnosis of COVID-19. Thus, chest CT and ultrasound may have more utility for excluding COVID-19 than for differentiating SARS-CoV-2 infection from other causes of respiratory illness. Future diagnostic accuracy studies should pre-define positive imaging findings, include direct comparisons of the various modalities of interest in the same participant population, and implement improved reporting practices.


Subject(s)
COVID-19/diagnostic imaging , Radiography, Thoracic , Tomography, X-Ray Computed , Ultrasonography , Adolescent , Adult , Aged , Bias , COVID-19 Nucleic Acid Testing/standards , Child , Confidence Intervals , Humans , Lung/diagnostic imaging , Middle Aged , Radiography, Thoracic/standards , Radiography, Thoracic/statistics & numerical data , Reference Standards , Sensitivity and Specificity , Tomography, X-Ray Computed/standards , Tomography, X-Ray Computed/statistics & numerical data , Ultrasonography/standards , Ultrasonography/statistics & numerical data , Young Adult
7.
Cochrane Database Syst Rev ; 11: CD013639, 2020 11 26.
Article in English | MEDLINE | ID: covidwho-946940

ABSTRACT

BACKGROUND: The respiratory illness caused by SARS-CoV-2 infection continues to present diagnostic challenges. Early research showed thoracic (chest) imaging to be sensitive but not specific in the diagnosis of coronavirus disease 2019 (COVID-19). However, this is a rapidly developing field and these findings need to be re-evaluated in the light of new research. This is the first update of this 'living systematic review'. This update focuses on people suspected of having COVID-19 and excludes studies with only confirmed COVID-19 participants. OBJECTIVES: To evaluate the diagnostic accuracy of thoracic imaging (computed tomography (CT), X-ray and ultrasound) in people with suspected COVID-19. SEARCH METHODS: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, The Stephen B. Thacker CDC Library, and repositories of COVID-19 publications through to 22 June 2020. We did not apply any language restrictions. SELECTION CRITERIA: We included studies of all designs that recruited participants of any age group suspected to have COVID-19, and which reported estimates of test accuracy, or provided data from which estimates could be computed. When studies used a variety of reference standards, we retained the classification of participants as COVID-19 positive or negative as used in the study. DATA COLLECTION AND ANALYSIS: We screened studies, extracted data, and assessed the risk of bias and applicability concerns using the QUADAS-2 domain-list independently, in duplicate. We categorised included studies into three groups based on classification of index test results: studies that reported specific criteria for index test positivity (group 1); studies that did not report specific criteria, but had the test reader(s) explicitly classify the imaging test result as either COVID-19 positive or negative (group 2); and studies that reported an overview of index test findings, without explicitly classifying the imaging test as either COVID-19 positive or negative (group 3). We presented the results of estimated sensitivity and specificity using paired forest plots, and summarised in tables. We used a bivariate meta-analysis model where appropriate. We presented uncertainty of the accuracy estimates using 95% confidence intervals (CIs). MAIN RESULTS: We included 34 studies: 30 were cross-sectional studies with 8491 participants suspected of COVID-19, of which 4575 (54%) had a final diagnosis of COVID-19; four were case-control studies with 848 cases and controls in total, of which 464 (55%) had a final diagnosis of COVID-19. Chest CT was evaluated in 31 studies (8014 participants, 4224 (53%) cases), chest X-ray in three studies (1243 participants, 784 (63%) cases), and ultrasound of the lungs in one study (100 participants, 31 (31%) cases). Twenty-six per cent (9/34) of all studies were available only as preprints. Nineteen studies were conducted in Asia, 10 in Europe, four in North America and one in Australia. Sixteen studies included only adults, 15 studies included both adults and children and one included only children. Two studies did not report the ages of participants. Twenty-four studies included inpatients, four studies included outpatients, while the remaining six studies were conducted in unclear settings. The majority of included studies had a high or unclear risk of bias with respect to participant selection, index test, reference standard, and participant flow. For chest CT in suspected COVID-19 participants (31 studies, 8014 participants, 4224 (53%) cases) the sensitivity ranged from 57.4% to 100%, and specificity ranged from 0% to 96.0%. The pooled sensitivity of chest CT in suspected COVID-19 participants was 89.9% (95% CI 85.7 to 92.9) and the pooled specificity was 61.1% (95% CI 42.3 to 77.1). Sensitivity analyses showed that when the studies from China were excluded, the studies from other countries demonstrated higher specificity compared to the overall included studies. When studies that did not classify index tests as positive or negative for COVID-19 (group 3) were excluded, the remaining studies (groups 1 and 2) demonstrated higher specificity compared to the overall included studies. Sensitivity analyses limited to cross-sectional studies, or studies where at least two reverse transcriptase polymerase chain reaction (RT-PCR) tests were conducted if the first was negative, did not substantively alter the accuracy estimates. We did not identify publication status as a source of heterogeneity. For chest X-ray in suspected COVID-19 participants (3 studies, 1243 participants, 784 (63%) cases) the sensitivity ranged from 56.9% to 89.0% and specificity from 11.1% to 88.9%. The sensitivity and specificity of ultrasound of the lungs in suspected COVID-19 participants (1 study, 100 participants, 31 (31%) cases) were 96.8% and 62.3%, respectively. We could not perform a meta-analysis for chest X-ray or ultrasound due to the limited number of included studies. AUTHORS' CONCLUSIONS: Our findings indicate that chest CT is sensitive and moderately specific for the diagnosis of COVID-19 in suspected patients, meaning that CT may have limited capability in differentiating SARS-CoV-2 infection from other causes of respiratory illness. However, we are limited in our confidence in these results due to the poor study quality and the heterogeneity of included studies. Because of limited data, accuracy estimates of chest X-ray and ultrasound of the lungs for the diagnosis of suspected COVID-19 cases should be carefully interpreted. Future diagnostic accuracy studies should pre-define positive imaging findings, include direct comparisons of the various modalities of interest on the same participant population, and implement improved reporting practices. Planned updates of this review will aim to: increase precision around the accuracy estimates for chest CT (ideally with low risk of bias studies); obtain further data to inform accuracy of chest X-rays and ultrasound; and obtain data to further fulfil secondary objectives (e.g. 'threshold' effects, comparing accuracy estimates across different imaging modalities) to inform the utility of imaging along different diagnostic pathways.


Subject(s)
COVID-19/diagnostic imaging , Radiography, Thoracic , SARS-CoV-2 , Tomography, X-Ray Computed , Ultrasonography , Adult , Bias , Case-Control Studies , Child , Cross-Sectional Studies/statistics & numerical data , Diagnostic Errors/statistics & numerical data , Humans , Lung/diagnostic imaging , Radiography, Thoracic/statistics & numerical data , Reverse Transcriptase Polymerase Chain Reaction/statistics & numerical data , Sensitivity and Specificity , Tomography, X-Ray Computed/statistics & numerical data , Ultrasonography/statistics & numerical data
8.
Cochrane Database Syst Rev ; 9: CD013639, 2020 09 30.
Article in English | MEDLINE | ID: covidwho-809177

ABSTRACT

BACKGROUND: The diagnosis of infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents major challenges. Reverse transcriptase polymerase chain reaction (RT-PCR) testing is used to diagnose a current infection, but its utility as a reference standard is constrained by sampling errors, limited sensitivity (71% to 98%), and dependence on the timing of specimen collection. Chest imaging tests are being used in the diagnosis of COVID-19 disease, or when RT-PCR testing is unavailable. OBJECTIVES: To determine the diagnostic accuracy of chest imaging (computed tomography (CT), X-ray and ultrasound) in people with suspected or confirmed COVID-19. SEARCH METHODS: We searched the COVID-19 Living Evidence Database from the University of Bern, the Cochrane COVID-19 Study Register, and The Stephen B. Thacker CDC Library. In addition, we checked repositories of COVID-19 publications. We did not apply any language restrictions. We conducted searches for this review iteration up to 5 May 2020. SELECTION CRITERIA: We included studies of all designs that produce estimates of test accuracy or provide data from which estimates can be computed. We included two types of cross-sectional designs: a) where all patients suspected of the target condition enter the study through the same route and b) where it is not clear up front who has and who does not have the target condition, or where the patients with the target condition are recruited in a different way or from a different population from the patients without the target condition. When studies used a variety of reference standards, we included all of them. DATA COLLECTION AND ANALYSIS: We screened studies and extracted data independently, in duplicate. We also assessed the risk of bias and applicability concerns independently, in duplicate, using the QUADAS-2 checklist and presented the results of estimated sensitivity and specificity, using paired forest plots, and summarised in tables. We used a hierarchical meta-analysis model where appropriate. We presented uncertainty of the accuracy estimates using 95% confidence intervals (CIs). MAIN RESULTS: We included 84 studies, falling into two categories: studies with participants with confirmed diagnoses of COVID-19 at the time of recruitment (71 studies with 6331 participants) and studies with participants suspected of COVID-19 (13 studies with 1948 participants, including three case-control studies with 549 cases and controls). Chest CT was evaluated in 78 studies (8105 participants), chest X-ray in nine studies (682 COVID-19 cases), and chest ultrasound in two studies (32 COVID-19 cases). All evaluations of chest X-ray and ultrasound were conducted in studies with confirmed diagnoses only. Twenty-five per cent (21/84) of all studies were available only as preprints, 15/71 studies in the confirmed cases group and 6/13 of the studies in the suspected group. Among 71 studies that included confirmed cases, 41 studies had included symptomatic cases only, 25 studies had included cases regardless of their symptoms, five studies had included asymptomatic cases only, three of which included a combination of confirmed and suspected cases. Seventy studies were conducted in Asia, 2 in Europe, 2 in North America and one in South America. Fifty-one studies included inpatients while the remaining 24 studies were conducted in mixed or unclear settings. Risk of bias was high in most studies, mainly due to concerns about selection of participants and applicability. Among the 13 studies that included suspected cases, nine studies were conducted in Asia, and one in Europe. Seven studies included inpatients while the remaining three studies were conducted in mixed or unclear settings. In studies that included confirmed cases the pooled sensitivity of chest CT was 93.1% (95%CI: 90.2 - 95.0 (65 studies, 5759 cases); and for X-ray 82.1% (95%CI: 62.5 to 92.7 (9 studies, 682 cases). Heterogeneity judged by visual assessment of the ROC plots was considerable. Two studies evaluated the diagnostic accuracy of point-of-care ultrasound and both reported zero false negatives (with 10 and 22 participants having undergone ultrasound, respectively). These studies only reported True Positive and False Negative data, therefore it was not possible to pool and derive estimates of specificity. In studies that included suspected cases, the pooled sensitivity of CT was 86.2% (95%CI: 71.9 to 93.8 (13 studies, 2346 participants) and specificity was 18.1% (95%CI: 3.71 to 55.8). Heterogeneity judged by visual assessment of the forest plots was high. Chest CT may give approximately the same proportion of positive results for patients with and without a SARS-CoV-2 infection: the chances of getting a positive CT result are 86% (95% CI: 72 to 94) in patient with a SARS-CoV-2 infection and 82% (95% CI: 44 to 96) in patients without. AUTHORS' CONCLUSIONS: The uncertainty resulting from the poor study quality and the heterogeneity of included studies limit our ability to confidently draw conclusions based on our results. Our findings indicate that chest CT is sensitive but not specific for the diagnosis of COVID-19 in suspected patients, meaning that CT may not be capable of differentiating SARS-CoV-2 infection from other causes of respiratory illness. This low specificity could also be the result of the poor sensitivity of the reference standard (RT-PCR), as CT could potentially be more sensitive than RT-PCR in some cases. Because of limited data, accuracy estimates of chest X-ray and ultrasound of the lungs for the diagnosis of COVID-19 should be carefully interpreted. Future diagnostic accuracy studies should avoid cases-only studies and pre-define positive imaging findings. Planned updates of this review will aim to: increase precision around the accuracy estimates for CT (ideally with low risk of bias studies); obtain further data to inform accuracy of chest X rays and ultrasound; and continue to search for studies that fulfil secondary objectives to inform the utility of imaging along different diagnostic pathways.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnostic imaging , Pneumonia, Viral/diagnostic imaging , Adult , COVID-19 , COVID-19 Testing , Child , Coronavirus Infections/diagnosis , Humans , Lung/diagnostic imaging , Pandemics , Radiography, Thoracic/statistics & numerical data , SARS-CoV-2 , Sensitivity and Specificity , Tomography, X-Ray Computed/statistics & numerical data , Ultrasonography/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL